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Spline Approximation to the Solution of the Volterra 
Integral Equation of the Second Kind 

By Arun N. Netravali 

Abstract. A cubic spline approximation in C2 to the solution of a general Volterra integral 
equation of the second kind is constructed. Under certain conditions, convergence of the 
approximation and its first two derivatives is proved and error bounds are obtained. The 
question of stability is not examined. 

1. Introduction. The developments in the present paper on the cubic spline 
approximation to the solution of the Volterra integral equation of the second kind 

(1) x(s) - f K(s, t, x(t)) dt = y(s), 0 < s < b, 

complement those in a preceding paper [1] on the Fredholm integral equation. In 
the above equation, K(. , * , *) and y(.) are real-valued functions on subsets of R3 
and R1, respectively, satisfying appropriate smoothness conditions. The function 
x(*) from the subset of R1 into R1 denotes the solution of (1). 

Several authors have investigated the numerical solution of (1) using various 
methods which rely on the approximation of the integral appearing in (1) by some 
quadrature. Use of the trapezoidal rule for the case of convolutional kernels for 
linear equations was discussed by Jones [2], and for general kernels by Noble [3]. 
Lobatto quadrature schemes were used by Jain and Sharma [4]. Such methods were 
also discussed by Fox and Goodwin [5]. A systematic study of a class of such methods 
was undertaken by Linz [6] who generalized some previous approaches and gave 
a complete error analysis. Runge-Kutta methods were developed in a manner similar 
to that of ordinary differential equations by the use of Taylor's expansion, by Pouzet 
[7], [8], Laudet [9], Bel'tjukov [10], and Feldstein [11]. 

All the methods mentioned above give approximate values of the solution at 
a set of discrete points. Our aim is to obtain a technique which gives rise to globally 
convergent methods having several continuous derivatives. These methods are 
useful when we have a priori knowledge of the smoothness properties of the kernel 
K(s, t, x) and the forcing function y(s), since, if the kernel and the forcing function 
have continuous derivatives up to the order p in the domain of integration, then the 
solution also has continuous derivatives up to the same order. They are economical 
when the value of the solution and its derivatives are required at a large number of 
points where usual methods of computation [to compute at each point] would be 
time consuming. 

Such methods have been discussed recently by Loscalzo and Talbot [12] for the 
solution of ordinary differential equations and were later extended by Loscalzo and 
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Schoenberg [13], and Varga [14]. Hung [15] has recently discussed the use of spline 
functions for solving Volterra integral equations of first and second kind. In par- 
ticular, for a Volterra integral equation of second kind, he obtains convergent so- 
lutions in C and C1 using linear and quadratic splines. He also shows that his tech- 
nique, using cubic spline of full continuity [i.e. solutions in C2], is divergent and 
therefore develops a method using Hermite interpolation to obtain a cubic spline 
solution in C1, gives asymptotic error estimates, and proves A-stability in the sense 
of Dahlquist. Thus, his existing techniques cannot be used to obtain a solution in 
C2 and if they are extended by using Hermite interpolation of higher degree, they 
will involve additional computation [i.e. computation of second or higher derivatives] 
as compared to our method. In this paper, we show that the divergence of higher 
degree splines depends upon the particular method used and is not necessarily a 
result of strictness of the continuity requirements. We develop a self-starting technique 
using cubic splines in C2, prove its convergence, and give high quality error bounds 
for the solution as well as its first two derivatives. The problem of stability along 
with some other extensions will be discussed in a future paper. 

2. Construction of the Approximation and the Error Bounds. Although we could 
consider an arbitrary mesh, for simplicity, we divide the interval [0, s] into m equal 
parts such that mh = s, and define the mesh by 

(2) Am:O,h,2h, * , mh = s. 

We denote the cubic spline of type I [16, p. 75] which interpolates the values x (1), 
x(O), x(h), * , x(mh), x (' (mh) of the function x(t) by SA m(X, t), 0 < t < s. Such 
a spline may be expressed in terms of the basis of cardinal splines Cm, ,(t), j = 0, **, 
m + 2, which are defined as type I cubic splines on [0, s] satisfying 

(3a) Cm,j(ih) = 5ii; i = 0, 1, ... , m; = , 1, . .. m, 

(3b) Cm i (0) = C 0 (s) O; = 1, ... ,m 

(3c) Cm,k(ih) = 0; k = m + 1, m + 2; i - 0, 1, ..., m, 

(3d) Cm ,m+i(O) = 1; Cm,m+l(mh) = 0, 

(3e Cm, m+2(0) = 0; m,m+2(mh) = 1- 

where 6i i is the Kronecker delta. Thus the type I cubic spline interpolating the solution 
x of (1) on Am may be written as 

m 
(4) SA.m(X t) = E X(kh)Cm,k(t) + X(1)(0)Cm,m+i(t) + x 1)(mh)Cm,m+2(t). 

k=O 

The values of the approximate solution, x, obtained by replacing the integral in (1) 
by spline quadrature can be written as 

mh m 
xm(mh) = y(mh) + f K mh, t, E Cm, j(t)xj(jh) 

(5) =O 

+ Cm,m+i(t)x'1'(0) + Cm m+2(t)V)(mh)] dt, 



SPLINE APPROXIMATION 101 

X. (mh) = y 1(mh) + K(mh, mh, xm(mh)) 
mh m 

(6) + K() mh, t, E Cm,j(t)xJj(jh) 
o j~~~~=O 

+ Cmm+l(t)!(1(0) + Cm.m+2(t)V()(mh)] dt 

where 

(7) (O) = x(O)= y(O), 

(8) x (O) = y (0) + K(O, 0, y(0)) 

and 

lJi 
(9) K(i)(s, t, x) = d [K(s, t, x)]. 

Equations (5) and (6) are two simultaneous nonlinear algebraic equations for 
xm(mh) and X l(mh), which can be solved by any of the available, sufficiently accurate, 
"root finding" techniques. Solvability of these equations and the error bounds are 
treated in the Theorem. The global approximate solution is obtained by simple 
cubic spline interpolation on x(O), x (1 (), xl(h), * .--, m(mh), xl(mh), which we 
denote by SAm(Xm, t). 

We first state two lemmas whose proofs can be found elsewhere. From now on, 
s is assumed to be a constant and h is chosen such that s = mh. 

LEMMA 1. If { Cm, i(t); i = 0, 1, ..., m + 2} is the set of cardinal splines on 
the mesh Am, then there exist three positive constants M1, M2, M3 such that 

mh 

(10) (a) J Cm, j(t)I dt ? M1h; j = 0,..., m + 2, 

and hence 

(11) (b) max [!Cm,j(t)I] ? M2; i = 0, m + 2, 
0< t !nmh 

mh 

(12) (c) f ICm,i(t)12 dt ? M3 h; j = 0, , m + 2. 

Proof. For the cardinal splines Cm j(t), j = 1, ... , m- 1, the above follows 
easily from Theorem 1 of [17]. For the remaining splines, it can be shown similarly 
that the conclusion still holds. 

LEMMA 2 (GRONWALL; SEE LEES [18, LEMMA 1]). Let {e,,} be a sequence of real 
numbers satisfying 

n-1 

(13) le,I < A-h le, I + B,,, n = 1, ..* 

for some positive constant A and nondecreasing sequence { B,, }. Then 

(14) le,| -< Bn ,exp(Ahn). 
THEOREM. Let the solution of (1), x(.), be in C4[0, mh] and 

(15) IK(t)(s, t, xl) - K(t)(s, t, x2)f _ Lix1 - x2f; i = 0, 1; 0 < t < s < b. 
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Then 

(16a) max [Ix(i)(jh) - ()(jh)l] < 0(h4), i = , 1, 
1! jim 

and there exist constants M4, M5, and M6 such that 

(16b) sup [lx("'(t) - SA(i)Qm, t)I] _A M4+i(h)4-i, = 0, 1, 2. 
0< t!mh 

Proof. Define 

(17) ei = x(jh) -x(jh), 

(18) e' = x(l)(jh) -x(l)(jh), 

(19) E = 
col[e',eo,el, 

* em el 

Using these definitions, (5) and (6) give 
mh 

em = [K(mh, t, x(t)) - K(mh, t, Sam(x, t))] dt 
(20) 0 

fmh 
- J [K(mh, t, SAm(jm, t)) - K(mh, t, Sam(X, t))] dt, 

e'- [K(mh, mh, x(mh)) - K(mh, mh, Am(mh))] 
mh 

(21) = f [K(l)(mh, t, x(t)) - K(')(mh, t, SAm(x, t))] dt 

mh 

+ [K("(mh, t, Sa(x, t)) - K(')(mh, t, SaimG(m, t))] 
dt.' 

From the hypothesis, Lemma 1, and the convergence property of the cubic 
splines [16, Theorem 2.3.4] we get 

mh 

(22) f [K( )(mh, t, x(t)) - K i(mh, t, SAim(x t))] dt < LiM7h4, i = 0, 1, 

and 
mh 

f [K (mh, t, SA,(Xg t)) - K(')(mh, t, Sam(Qmg t))] dt 

rmh 

(23) < f LiISAm(E, t)l dt 

_ LiM1h[2 ekl + lemI + le'] , i = 0, 1. 
k =O 

Using these, (20) and (21) reduce to the following simultaneous linear difference 
inequalities: 

(24) lem ? LoM7h4 + LOMlh l'ekl + Ie ] 

(25) Iem| _ Lo lemi + L1M7h4 + LIMlh ekl + men} 
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Elimination of emI gives 

{(1 - L1Mjh)(1 - LOM,h)- LoMjh(Lo + L1Mjh)} leml 

(26) m-1 

< {(1 - L1Mlh)LoM,h + LoM Ljh2} E lekI + m 
k=O 

where 

(27) JtmI i Mloh4. 

It is easy to observe that, for sufficiently small h, 

(28) {(1 - L1Mjh)(1 - LOM,h) - LoMjh(Lo + L1Mjh)} > c > 0 

and 

(29) {(1 - 
L1Mlh)LOM,h 

+ LOMlL1h2} ? 
M2hl. 

We note that Eq. (28) implies solvability of xm(mh) and consequently of x"(mh) 
from (5) and (6). 

Let {fm } be a sequence of real numbers satisfying 

(30) fM < 1h r n + -i 

with fo = 0. Then from (26) and Lemma 2, we get 

(31) lemI -< fm <- (m exp(M 11s/c) = 0(h4) 

and hence, from (25), 

(32) IemI - 0(h4). 

Let z(t), 0 < t < mh, be any function such that 

(33) z(.) C C5[O, mh]; zW )(kh) = 
A M (kh); k = 0, *., m; i = 0, 1. 

(Note that such a z(t) can be constructed by Hermite interpolation.) Then, by the 

interpolation property of cubic splines [17], 

(34) S'MQM(m, t) = z(z'(t) + 0(h4) = x( (t) + 0(h4), 

i = 0, 1, t = h, 2h, *,mh. 

Thus, SA ,(xm, t) is a cubic spline which, along with its first derivative, agrees with 

the true solution and its first derivative at the mesh points to the fourth order accuracy. 
It can then be easily proved (see for example Lemma 4 and Theorem 5 in [12]) that 

the Theorem holds. 
It should be noted that the above Theorem establishes only a convergence result 

and does not consider the important question of stability. For linear Volterra equa- 
tions, as stated in the following Corollary, conditions for convergence can be slightly 
weakened. Also, elimination of xM1'(mh) from Eqs. (5) and (6) is possible, thus sim- 

plifying the computation of SA xQm, t) [i.e. to compute SA ,(xm, t), 0 _ t < s, we 
can compute x1(h), * m, x(mh), RxM.(mh) without having to compute all the values 

xl(h), x'1 (h), x m(mh), xmP (mh)]. 
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TABLE I 

Table for Numerical Examples Investigated 

Example K(t, s) y(s) Exact Solution x(s) 

I st e S(1 + s + S2) -s es 

2 

I I s t sin 7rs[1 - s/72] + - cos 7rs sin irs 

III s4eat (S-s2) + S ( 1/s) s 

4 

IV s4eat sin irs-- S in 7rs 
s2 + 7rS 

*[e82(s.sin 7rs)-7r cos 7rs] + 7r 

COROLLARY. Let the linear Volterra equation be represented by 

(35) x(s) - K(s, t)x(t) dt = y(s), 0 < s < b. 

If the solution of (35), x(.), is in C4[0 mh], and 
mh 

(36) f IK"'i(mh, t)j dt _ Mi, i = O, 1, 

then there exist constants M12, M13, M14 such that 

(37) sup [IX(i)(t) - S(im)Q, t)I] -< M12+i(h)4 X, i = 0, 1, 2, 
0! tgmh 

where Sa mJxm, t) is obtained by following the same procedure as before. 
Proof. The proof is very similar to that of the Theorem and is therefore omitted. 

3. Numerical Examples. In actual computations, two representations of the 

cubic spline, other than the cardinal spline representation used above, prove to be 

more helpful. One of them [16] is easily written in terms of S'2'(x, ti) at the mesh 

points. The other representation developed by Nilson [19] expresses each cardinal 

spline as a linear combination of two basic cubic arcs. Four examples, shown in 

Table I, were studied on the interval [0, 1]. In each case, this interval was subdivided 

TABLE II 
Maximum Error for the Numerical Examples Investigated 

EXAMPLE 

N I II III IV 

5 3.4351 X i0-5 1.3814 X i0-4 6.3846 X i0-4 7.6124 X i0-4 

10 1.041 X i0-5 2.4150 X i0-5 8.7613 X 10-5 1.3126 X 10-4 

15 7.316 X 10-6 9.463 X 10-6 1.127 X i0-5 4.678 X i0-5 

20 8.743 X 10-8 1.783 X i0-7 8.761 X 10-7 1.389 X 10-6 
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into N equal parts and the solution was obtained recursively starting from x(O) 
and x"(0). Only the maximum error is tabulated for these examples in Table II, 
but, as noted before, the global approximation could be obtained by the spline 
interpolation as stated in the text of the paper. Programs for all the four examples 
were written in double precision using Fortran IV language for a Burroughs B-5500 
computer. 

4. Conclusions. Global approximations to the solution of Volterra integral 
equation of the second kind have been obtained. Under appropriate conditions on 
the kernel and the forcing function, convergence of these approximations to the 
exact solution and the error bounds have been derived. These results are illustrated 
by means of numerical examples. Additional smoothness of the approximating 
solution can be achieved by the use of higher order splines at the cost of increased 
computation. 
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